
JAEPR, 2(2), 15-35 

Copyright © 2016,  

ISSN: 1930-9325 

 

RESEARCH ARTICLES 

 

 

 

Novel Interpretations of Academic Growth 
 

 

Gary L. Williamson 

MetaMetrics 

 

 
Integrating a construct theory with Rasch measurement not only places persons and tasks 

on a common scale, but it also resolves the indeterminacy of scale location and unit size 

when the scale is anchored in an operationalized task continuum based on the construct 

theory.  Such an approach has several advantages for understanding academic growth as 

evidenced in a series of empirical examples, which demonstrate how to: a) conjointly 

interpret student reading growth in the context of reading materials concomitantly used 

during instruction; b) interpret a reading growth trajectory in light of future (e.g., 

postsecondary) reading requirements; c) forecast individual reading comprehension rates 

relative to both contemporary and future text complexity requirements; and d) create 

growth velocity norms for average academic growth in reading or mathematics 

achievement. 
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During the 1980’s two measurement companies in the United States introduced a fundamental 

innovation in the scaling of student reading ability that moved the world closer to an absolute 

framework for the measurement of reading comprehension.  The strategy entailed combining the 

Rasch measurement model with an operationalized reading construct theory.  As with other item 

response theory (IRT) models, the Rasch model makes it possible to place persons and tasks 

(items) on a common scale, but certain scale properties (location, unit size) are arbitrary (i.e., 

they vary with changes in the person sample and/or items).  The key innovation involved two 

steps that anchored the scale and defined its unit size in terms of an empirical text complexity 

continuum.   

The first step was to define and validate a construct model that operationalized the 

reading difficulty of texts in terms of specific semantic and syntactic features of texts that are 

effective proxies for the cognitive demand experienced by readers while reading.  Secondly, it 

was demonstrated that the empirical difficulties of a well-defined, text-based item type could be 

nearly perfectly predicted by the complexities of the texts associated with the items.  Once 

students and items were measured via the Rasch model, the construct theory was used to 

calibrate the items to the text complexity continuum.  This produced a direct correspondence 

between the person measures and the text measures.  
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The company now known as Questar Assessment, Inc. was the first to use this type of 

approach.  They developed the Degrees of Reading Power
®
 (DRP

®
) Program, which reports 

student reading measures from criterion-referenced tests on a proprietary DRP Scale of Text 

Complexity, which it uses to measure the reading difficulty of printed material (Bruning, 1985).  

Nelson, Perfetti, D. Liben and Liben (2012) described the scale as follows: 

 

DRP text difficulty is expressed in DRP units on a continuous scale with a theoretical 

range from 0 to 100. In practice, commonly encountered English text ranges from about 

25 to 85 DRP units, with higher values representing more difficult text.  (p. 11)  

 

Questar defined a DRP prose comprehension model based on the application of the Bormuth 

(1969) readability formula to measure text complexity.  Their reference item type was a text-

embedded, cloze item (i.e., based on a text passage with certain words removed) administered 

according to a specific protocol.  The unit size of the DRP scale was specified in terms of a 

transformation of the Bormuth text complexity measure, R.  Research has shown that the DRP 

scale places both student reading ability and text complexity on a common well-defined, 

unidimensional scale that remains invariant over time.  Thus, research supports the claim that the 

DRP tests “are like measures in the natural sciences.” (B. L. Koslin, Zeno, & Koslin, 1987; p. 

171) 

At nearly the same time, a second company pursued the same fundamental idea.  

MetaMetrics
®
 developed The Lexile

®
 Framework for Reading to measure both readers and texts 

on a common scale.  They independently developed a construct-specification equation to 

operationalize text complexity and predict item difficulties (Stenner & Smith, 1982; Stenner, 

Smith & Burdick, 1983).  They also developed a well-defined reference item type (consisting of 

a text passage followed by a cloze-like, sentence-completion stem) and demonstrated that the 

empirical difficulties of such items could be nearly perfectly predicted by the difficulties of the 

associated texts (Stenner, D. R. Smith, Horabin & Smith, 1987).  They coupled this construct 

model with a Rasch measurement model to place both a student’s reading ability and a text’s 

readability on a common invariant scale.   

In order to define a logical unit for the Lexile scale, MetaMetrics chose to explicitly 

anchor its scale at two points on the text-complexity continuum.  Based on its anchoring, a 

Lexile scale unit equals 1/1000 of the difference between the readability of certain specific basal 

primers and the readability of an online adult encyclopedia (Stenner, H. Burdick, Sanford, & 

Burdick, 2007).  This approach provided a well-defined unit of measurement that retains its 

absolute size across different applications of measurement. It may be noted that this method is 

directly analogous to the way the meter was standardized based on the length of the meridian 

quadrant (i.e., the distance from the North Pole to the equator) through Paris (Legendre, 1805).  

It is also precisely analogous to the way that temperature scales are anchored. 

Because the Lexile Framework and the DRP are based on a Rasch measurement model, 

they are examples of conjoint measurement. Conjoint measurement makes it possible to 

simultaneously scale two variables that jointly predict an outcome.  For example, reader ability 

and text difficulty jointly predict reading comprehension; so, both the reader measure and the 

text difficulty measure can be placed on a common scale.  Thus, both the Lexile Framework and 

the DRP can be utilized to generate student scores that are reported on a text difficulty 

continuum, giving the scores supplemental interpretability anchored in a real-world context.  

Since their creation, both systems have been widely implemented in the United States. The 
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primary use of both these systems to date appears to have been the matching of students with 

texts of appropriate difficulty.   

In 2004, MetaMetrics launched The Quantile
®
 Framework for Mathematics, a 

measurement system for mathematical understanding, which uses Rasch measurement to 

conjointly scale both persons and items and anchors the resulting scale in a real-world task 

continuum.  The Quantile Framework uses a quantified mathematics lesson continuum as the 

real-world context for anchoring the developmental scale (Sanford-Moore et al., 2014).  As a 

companion scale to the Lexile Framework, the Quantile Framework demonstrates that the 

strategy of combining Rasch measurement with construct theories and anchoring the resulting 

scales in real-world task continua is a viable method for behavioral science measurement which 

generalizes to multiple constructs.  As was the case with the Lexile Framework, the Quantile 

Framework was primarily designed to link assessment with instruction (MetaMetrics, 2009).   

The purpose of this paper is to demonstrate, through several examples, that 

interpretations of student academic growth benefit from the use of Rasch-based measurement 

scales that have been anchored in a real-world task continuum by means of construct theory.  

These examples benefit from the fact that one state had the foresight and commitment to utilize 

such scales over a long period of time.  The state of North Carolina (NC) began linking its 

reading assessment scales to the Lexile Framework for Reading starting with the first edition of 

its end-of-grade assessments (introduced in 1993) and continuing with subsequent editions of 

reading tests up to the current day.  Similarly, the state began linking its mathematics 

assessments to the Quantile Framework starting with the third edition (introduced in 2006) of 

their mathematics end-of-grade tests and continuing to the present day.  In addition, the state 

began linking its high school content area tests in 2008, providing a basis to extend the 

longitudinal measurement of reading and mathematics achievement on common scales beyond 

the elementary and middle school years.   

These measurement innovations adopted by North Carolina have several advantages for 

the interpretation of academic growth.  As demonstrated in the examples, the benefits include: a) 

conjointly interpreting student reading growth in the context of reading materials concomitantly 

used during K-12 instruction; b) interpreting a reading growth trajectory in light of future (e.g., 

postsecondary) reading requirements; c) forecasting individual reading comprehension rates 

relative to both contemporary and future text complexity requirements; and d) creating growth 

velocity norms for average academic growth in reading and mathematics. 

Theories about the developmental velocity of physical attributes can be traced to 

Aristotle, who observed that height increases fastest when individuals are young; over the 

intervening centuries, many studies of stature have confirmed and explicated this now well-

accepted fact (Tanner, 2010).  However, it was not until the emergence of educational and 

psychological measurement in the early part of the 20
th

 century, that studies of individual 

academic growth became possible.   

A central question in all studies of academic growth is what mathematical function to use 

for modeling individual growth and the decision necessarily reflects assumptions about learning 

rate (i.e., growth velocity).  In general there have been two traditions to address the question of 

functional form: a) the empirical tradition of fitting growth curves, which has been traced to 

Wishart (1938); and, the tradition of selecting a growth function based on an explicit theory of 

growth rate.  In the latter approach, theories of learning rate have been adapted from chemical 

processes (Robertson, 1909) and the study of mortality (Gompertz, 1825; Winsor, 1932), among 
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others.  Whether one works in a purely empirical tradition or is guided by substantive theory, all 

potential growth models must be subjected to empirical confirmation with longitudinal data.   

A key research hypothesis in longitudinal studies relates to whether growth proceeds 

according to a straight line (with constant velocity) or curvilinear pattern (with variations in 

velocity and/or acceleration).  Some researchers (e.g., Catts, Bridges, Little, & Tomblin, 2008; 

Guglielmi, 2008; Kieffer, 2012; Sonneschein, Stapleton, & Benson, 2010) found a straight-line 

growth model adequate for their purposes.  However, Lee (2010) reported that American 

students’ growth in reading and mathematics achievement during the K-12 school years is 

curvilinear, characterized by declining velocity over time.  Researchers using more extensive 

longitudinal research designs have confirmed this finding using the empirical approach (e.g., 

Schulte, Stevens, Elliott, Tindal, & Nese, 2016; Williamson, 2015) as well as the theory-driven 

approach to growth (Cameron, Grimm, Steele, Castro-Schilo, & Grissmer, 2015).   Moreover, 

Andrich and Styles (1994) provided psychometric evidence to substantiate intellectual growth 

spurts in early adolescence.  

In America, academic growth predominantly occurs in the context of schooling and 

growth is presumably influenced by exposure to instructional content.  Accordingly, it is 

illuminating to note that the difficulty of reading materials (Williamson, Koons, Sandvik, & 

Sanford-Moore, 2012) and the difficulty of mathematical skills and concepts (Sanford-Moore, 

Williamson, Bickel, Koons, Baker, & Price, 2014) also proceed across Grades K-12 in a 

curvilinear pattern characterized by positive velocity and deceleration.   

The adoption of specific, previously-determined, growth curve results for the subsequent 

examples carries with it a set of implicit research questions, which I here make explicit. 

 

1. Is NC aggregate reading growth curvilinear during Grades 3-8? 

a. What is the initial status of NC average reading growth in Grades 3-8? 

b. What is the initial velocity of reading growth, Grades 3-8? 

c. What is the acceleration of reading growth, Grades 3-8? 

2. Is NC aggregate reading growth curvilinear during Grades 3-11? 

a. What is the initial status of NC average reading growth in Grades 3-11? 

b. What is the initial velocity of reading growth, Grades 3-11? 

c. What is the acceleration of reading growth, Grades 3-11? 

3. Is NC aggregate mathematics growth curvilinear during Grades 3-11? 

a. What is the initial status of NC average mathematics growth in Grades 3-11? 

b. What is the initial velocity of mathematics growth, Grades 3-11? 

c. What is the acceleration of mathematics growth, Grades 3-11? 

 

Answers to these three research questions were available from previous research. The aggregate, 

student growth curves used in the subsequent examples all exhibit a quadratic (curvilinear) 

functional form with positive initial velocity accompanied by deceleration across time.  Specific 

parameter estimates are provided in the Examples section. 

The featured examples themselves also have associated research questions, explicitly 

stated below: 

 

d. How does average NC student reading growth compare with proposed text-

complexity standards widely adopted in the US?  
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e. How does average NC reading growth align with the text complexity of 

postsecondary reading materials?  

f. Given the average reading growth of NC students, what reading comprehension 

rates are forecasted relative to K-12 text-complexity standards? 

g. Given the average reading growth of NC students, what reading comprehension 

rates are forecasted relative to postsecondary text complexity?  

h. What incremental velocities characterize the historical, average reading growth of 

NC students from the end of Grade 3 to the end of Grade 11? 

i. What incremental velocities characterize the historical, average mathematics 

growth of NC students from the end of Grade 3 to the end of Grade 11? 

 

Answers to research questions 4 through 9 are presented and explained in the Examples section. 

Results from the current research study can be used by educators and students alike.  To 

illustrate, consider a student (or group of students) progressing through school.  Typically 

students are assessed on their reading and mathematics achievement annually.  As they are 

assessed, students can compare their individual performance and growth to the average historical 

growth of previous students.  Similarly, teachers can compare their students’ individual growth 

as well as the group’s aggregate growth with historical growth.  Additionally, students and 

teachers benefit from the conjoint properties of the measures in the following ways.  Based on 

the first three examples, student reading achievement is readily compared to the text-complexity 

of both K-12 and postsecondary texts; and, by monitoring students’ forecasted comprehension 

rates, teachers can individualize the match between students and texts that the teacher may assign 

as students improve their reading abilities.  Finally, as students accumulate a history of measured 

performance, educators can reference the velocity of reading growth and mathematics growth to 

historical growth rates determined from longitudinal data.  These interpretive contexts offer new 

insights and perspectives that can facilitate instruction as well as program monitoring and 

evaluation. 

 

 

DATA 
 

The “data” for the subsequent examples consist of the parameter estimates from multilevel 

growth models estimated for various panels of students who participated in the North Carolina 

assessment program.  As already mentioned, the parameter estimates are adopted from previous 

work (e.g., MetaMetrics, 2011; Williamson, 2014).  The original student-level data, which were 

the basis for the fitted growth models, consisted of Lexile or Quantile measures that were 

obtained through linking the North Carolina assessment scales to the Lexile Framework and the 

Quantile Framework.   

North Carolina assessments have well-documented technical characteristics (Bazemore & 

Van Dyk, 2004; North Carolina Department of Public Instruction, 2009; Sanford, 1996) and have 

successfully satisfied the requirements of the Elementary and Secondary Education Act (No 

Child Left Behind, 2002).  In general, panels were comprised of longitudinal data spanning 

Grades 3-8, where the assessments were administered once a year at the end of each grade.  For 

the velocity norms examples, additional waves of data were employed through Grade 11. 
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EXAMPLES 
 

The first three examples are based on a multilevel unconditional quadratic growth model, which 

was fit to the longitudinal data from a North Carolina panel spanning Grades 3-8 in 2000-2005.  

Based on data from every student who had at least one reading measure during the six-year time 

frame, this curve provides a historical summary of average student reading growth for 98,515 

students, representing 92.8% of the Spring 2005 eighth-grade cohort that defined the panel.  The 

estimates of the intercept, velocity and curvature parameters for the average reading growth 

curve were 670.2L, 119.6L/year and -6.1L/year
2
, respectively.  In Figure 1, I provide a visual 

summary of the statewide average reading growth curve, the corresponding velocity curve and 

the acceleration curve for reading growth based on the multilevel analysis. 

Note in Figure 1 the horizontal scale is graduated by grade, where the coding refers to the 

end of the respective year.  So for example, the numeral 3 on the grade scale refers to the end of 

Grade 3.  Furthermore, the time scale for the growth model was centered at the end of Grade 3; 

thus the velocity parameter estimate refers to the velocity at the end of Grade 3.  The vertical 

axis is denominated in Lexile scale units.  The meaning of the Lexile scale unit was described 

earlier. 

 

 

 
Figure 1.  Average reading growth, velocity and acceleration curves for the 2000-2005 North Carolina panel (n = 

98,515).  The vertical axis graduates the growth curve in Lexile scale units, the velocity curve in Lexile units/year 

and the acceleration curve in Lexile units/year
2
. 
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In Figure 1, notice that the growth curve begins around 670L at the end of Grade 3 and 

then rises quickly during the early grades; however, the curve decelerates across the Grade 3-8 

time frame.  The velocity curve in Figure 1 displays the fact that velocity is linearly related to 

time when the growth curve has a quadratic functional form.  In this particular example, the 

velocity curve shows that velocity declines from approximately 120L/year at the end of Grade 3 

to approximately 60L/year at the end of Grade 8.  The slope of the velocity curve (-12.2L) is 

equal to the acceleration rate of the growth curve.  Because the slope of the velocity curve is 

negative, growth is decelerating during the time frame.  For a quadratic growth curve, the 

acceleration rate is manifested through the curvature parameter.  Acceleration is constant and 

equal to twice the curvature parameter (i.e., -6.1L in this case).  This is consistent with the 

constant negative elevation displayed for the acceleration curve in Figure 1.  The growth, 

velocity and acceleration curves are relatively simple for a quadratic growth model; nevertheless, 

it is useful to display them in the fashion of Figure 1 because it provides a convenient and readily 

understandable summary of the key features of growth. 

 

 

Student Growth in Reading versus the Common Core State Standards 
 

The Common Core State Standards (CCSS) Initiative [National Governors Association Center 

for Best Practices (NGA Center) & the Council of Chief State School Officers (CCSSO), 2010] 

established quantitative text complexity standards for specific grade bands in the public schools.  

The standards are expressed as text complexity ranges denominated in terms of six text 

complexity metrics in common use in the United States.  One of those metrics is the Lexile 

measure, which makes it possible to compare the text complexity standards of the CCSS to 

actual student reading achievement measured with the Lexile Framework.  The CCSS College 

and Career Readiness Anchor Standards for Reading require that by the end of specific grades 

that demark the end of the CCSS grade bands (i.e., grades 3, 5, 8, 10, and 12), students must 

“read and comprehend literature, including stories, dramas, and poetry/poems, at the high end of 

the ... text complexity band independently and proficiently.” (pp. 12, 37, 38)  The upper end of 

the text complexity range for the Grade 11-12 grade band was labeled “CCR” by the CCSS to 

connote college and career readiness. 

In Figure 2, I depict the 2000-2005 NC growth curve and the CCSS text complexity 

ranges for Grades 3, 5 and 8.  The lower and upper boundaries of the CCSS text complexity 

ranges at the critical grades are represented by dots, which are connected by dashed lines to 

provide a visual reference as context for the growth trajectory.  If student growth were 

commensurate with the CCSS text complexity standards, then one would expect to see the 

growth curve traversing a path that lies within the text complexity boundaries, rising near the 

upper end of the range by the specified grades, which denote the end of each grade band.  In fact, 

the NC average growth curve approximates this behavior.  Its intercept appears to be slightly 

above the mid-point of the text complexity range for the Grade 2-3 grade band and the curve 

rises nearer the upper boundary by the end of the Grade 6-8 band.  If one imagines that the 

average growth curve is in fact the growth curve for an individual student, then it would seem 

that the student’s growth is reasonably well aligned with the standards.  Is it good enough?  What 

does the growth curve imply about the actual reading experience that the student would have 

relative to the CCSS upper boundaries as he or she grows?  I will come back to these questions 

in a subsequent example.  First, I wish to introduce the idea that there are additional text 
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requirements that characterize reading experiences which students may encounter after they 

graduate high school.  Consequently, student growth during the K-12 years has implications for 

reading experiences that students will encounter later. 

 

 

 
 
Figure 2.  Reading growth relative to the Common Core State Standards (CCSS) text complexity ranges.  The 

growth curve is the 2000-2005 North Carolina average growth curve (n = 98,515).  The dots represent the CCSS 

Lexile range boundaries at grades 3, 5 and 8.  The dashed lines provide a visual reference for the growth trajectory 

as it traverses the CCSS grade bands. 

 

 

Reading Growth in Relation to Postsecondary Text Complexity 
 

The objective of this example is to illustrate average student reading growth in relation to the text 

complexity of reading materials that students may encounter beyond high school.  To accomplish 

this objective, I combine knowledge about the functional form of reading growth during K–12 

with text complexity measures of postsecondary reading materials to construct an empirically-

based model of student growth toward postsecondary performance aspirations.  Such a model 

can be a useful first step toward understanding the possible long-term implications of growth. 

Williamson (2008) elaborated a continuum of text complexity for reading materials 

associated with typical postsecondary endeavors (e.g., postsecondary education, the military, the 

workplace, citizenship).  This work demonstrated substantial differences between the materials 

that high school students are expected to read and the materials they may encounter after high 
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school.  The latter reflect a substantially higher text demand, or correspondingly, require a higher 

reading ability from students in their postsecondary lives.  The median Lexile measures for five 

postsecondary text collections summarized by Williamson are:  1395L (university), 1295L 

(community college), 1260L (workplace), 1230L (citizenship) and 1180L (military).   

 Once again, I use the statewide average reading growth curve of the 2000-2005 NC 

panel.  Using the fixed effects estimates from the multilevel analysis, the average reading growth 

curve is expressed as a mathematical equation:  E(L|T) = 670.2 + 119.6 T - 6.1 T
2
.  This equation 

quantifies the estimated average achievement in any grade. 

 The 2000-2005 panel is comprised of 98,515 North Carolina public school students who 

were third graders in the spring of 1999-2000 and who progressed to the end of eighth grade in 

the spring of 2004-05.  These students progressed from Grade 3 to 8 without repeating a grade 

and were included in the analysis if they had at least one reading measure during the six-year 

time frame.  Consequently, the average growth curve of these students should provide a good 

illustration of typical student growth toward postsecondary expectations.  All of the relevant 

information about the growth curve is summarized in the three parameter estimates:  670.2L 

(initial status—end of third grade), 119.6L (initial velocity), and -6.1L (curvature).  

Data were not available prior to the end of Grade 3 or after the end of Grade 8. However, 

with some caution, the quadratic equation that characterizes the curve through the range of 

observed data can be used to estimate average performance before Grade 3 and after Grade 8.  

Simply evaluating the growth curve at the other time points suffices. 

 When extrapolating, it is important to use caution for at least two reasons.  First, there are 

no actual data to check the assumption that growth from Grades K–2 and Grades 9–12 can be 

described by the same quadratic equation that describes growth from Grades 3–8.  Second, the 

nature of a quadratic polynomial is that it has a maximum point or a minimum point, after which 

the curve reverses direction.  When the curve is concave to the time axis (as is the case for the 

NC average growth curve), there will be a maximum point after which the curve turns 

downward.  It is implausible that future performance will decline back to the third-grade level 

and below; this would be inconsistent with normal developmental growth. 

 There are (at least) three ways to address these concerns.  The easiest way is to 

analytically check the quadratic equation to determine when the maximum point occurs.  If it 

occurs outside the range of time to which one wishes to generalize, then there is less reason to 

worry that the depiction of growth may be inappropriate.  As it turned out, the maximum for the 

2000-2005 North Carolina growth curve occurred at Grade 12.9, almost a year beyond the end of 

twelfth grade, which is the last occasion for which average student achievement was projected.  

 A more direct way to avoid non-developmental behavior in a growth model is to adopt a 

different mathematical model for growth—e.g., one that cannot display a reversal in direction.  A 

linear model with a transformed time scale is one possibility, such as:  𝑟(𝑡) = 𝑎 + 𝑏 ln 𝑡, which 

increases monotonically without bound.  Another alternative is to select a model that is nonlinear 

in the parameters, such as the negative exponential:  𝑟(𝑡) = 𝑎 − (𝑎 − 𝑏)𝑒−𝑐𝑡, which increases 

monotonically to an asymptote.  There are many possibilities (e.g., see Singer & Willett, 2003; 

or, Goldstein, 1979 for a variety of specific choices).  Alternative models carry with them 

alternate interpretations of growth, may be more complex mathematically, and may require 

additional data to obtain satisfactory fit.  Ultimately, the choice of most appropriate model is 

based on multiple considerations—e.g., substantive theory, available data, empirical fit, 

parsimony, and perhaps other requirements. 
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The third way to address the risks of extrapolation is to strategically collect more data to 

fill in the missing time points with student achievement information.  Unfortunately, this is 

harder than it sounds for a variety of reasons, including the costs of collecting the information 

and the challenge of measuring the same construct over longer and longer periods of time.  For 

the present example, the results may be regarded as provisional, bearing in mind that 

extrapolations to lower and higher grades may need to be revised based on future information. 

 With those cautions in mind, Figure 3 shows the results of combining the information 

from the text analyses and the information from the NC reading growth curve.  There are several 

important things to notice about Figure 3.  

Once again, the horizontal scale represents end-of-grade in school.  On this scale, zero 

stands for the end of the kindergarten year.  Subsequent Grades (1–12) are denoted as usual.  

Then the numerals 13 through 14 are used to denote the next two years of postsecondary 

experience.  The vertical scale displays the Lexile measure, which is used to quantify both the 

students’ average reading achievement and the median text difficulty of each text collection. 

 

 

 
 

Figure 3.  Average student growth in relation to postsecondary text complexity.  The solid curve represents the 

2000-2005 North Carolina average growth curve (n = 98,515).  The dashed portions of the curve are mathematical 

extrapolations based on the quadratic equation for the average growth curve.  The shaded dots in the upper right 

represent the median text complexities for the respective text collections listed in the legend (Williamson, 2008). 

 

 

 In the graph, diamonds are used to indicate the estimated average reading ability of 

students at the end of each grade.  The estimates for Grades 3–8 are connected by the solid 
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empirical growth curve to represent the fact that they are based on the available data.  The 

estimates for Grades K–2 and 9–12 are connected with dashed curves to represent the fact that 

they are theoretical extrapolations determined analytically from the quadratic equation for the 

empirical growth curve.  As such, the dashed portions of the curve are only reasonable guesses 

based on the observed data, subject to future revision based on more complete longitudinal 

records
1
.  The farther one goes from the observed data (Grades 3–8), the more one has to bear in 

mind the provisional nature of the projections.  Finally, in the figure, the median text difficulties 

of the postsecondary text collections are arrayed vertically at Grade 13 to indicate that students 

face these expectations in the year following their exit from Grade 12. 

 The primary feature of the chart is the alignment of the projected twelfth-grade reader 

measure in conjunction with the postsecondary text measures.
2
  It appears that the average 

growth trajectory of these students, if unaltered, will carry them to a reading level (1256L) that 

lies near the median text requirements of the workplace (1260L).  Students with higher 

postsecondary aspirations (e.g., the community college, the university) need to be on a higher 

trajectory that tracks above the average growth curve depicted in the figure. 

 One must remember, however, that individual growth is variable and that students vary in 

their individual parameters of growth.  That is, students have different beginning points, different 

initial velocities and different degrees of deceleration.  Each of these features of growth results in 

a different individual trajectory, which may differ from the average growth trajectory.  Thus, 

there are many possible ways to reach a given end point.  For example, one student might begin 

at a higher level and exhibit modest but steady growth with little deceleration over time.  

Another might start out lower in reading ability but progress very rapidly with some deceleration 

over time.  Both students might reach the same twelfth-grade reading ability through different 

individual growth curves.  Williamson, Fitzgerald and Stenner (2014) discussed alternate growth 

trajectories in terms of the pedagogical and educational policy implications of directly targeting 

key features of growth (status, velocity and acceleration).  For example, early-intervention 

reading programs can successfully influence initial reading status; increased deliberate practice 

might impact velocity; and, systematic exposure to summer school could be a viable strategy to 

moderate deceleration. 

 

 

Forecasted Comprehension Rates Based on a Growth Curve 
 

For this example, I return to the question of what kind of reading experience students are likely 

to have with particular levels of text complexity—e.g., the CCSS text standards or postsecondary 

text requirements.  Again using the 2000-2005 NC average growth curve and supposing that the 

curve might describe the trajectory of a particular individual, it is possible to estimate the 

 
 
1
 Although there are assessments of U.S. students prior to the end of Grade 3 [e.g., the Early Childhood 

Longitudinal Study (ECLS)] and after the end of Grade 8 [e.g., National Education Longitudinal Studies (NELS)], 

they are generally available only for samples of individuals and reading measurements from these studies have not 

yet been brought onto a common scale. 
2
 The median difficulty (1130L) of texts used near the end of high school (i.e., grades 11 and 12) is not shown 

in the figure, because it does not represent a postsecondary aspiration.  High school texts are significantly easier to 

read on average than are citizenship materials, workplace materials, community college texts or university texts 

(Williamson, 2008). 



26     WILLIAMSON 

 

individual’s comprehension rate relative to texts the individual may encounter.  To do this, it is 

necessary to have a general idea of how the Lexile Framework for Reading can be used to 

forecast reading comprehension given a reader of a particular reading ability and a text of a 

particular difficulty.  Stenner, H. Burdick, Sanford and Burdick (2007) described the approach.  

In essence, one forecasts the comprehension rate by using the Rasch model equation, which 

expresses the reading outcome (comprehension) as a function of the exponentiated difference 

between the reader’s ability and the text’s difficulty.  The Lexile Framework is designed so that 

an exact match between reader and text (i.e., reader ability equals text complexity, and so the 

difference between the two is zero) results in a comprehension rate of 75%.  A comprehension 

rate of approximately 75% seems to be associated with successful reading experiences; whereas, 

a comprehension rate of 50% or lower results in frustration for the reader (Scholastic, Inc., 

2007).  MetaMetrics typically advises educators to choose texts that lie in a proximal zone 

ranging from 100L below the reader’s ability to 50L above it when using the Lexile Framework 

to match readers with texts of appropriate difficulty.  This proximal zone corresponds to 

comprehension rates that range from approximately 70% to 80%.  

Consider a reader whose growth curve is equal to the 2000-2005 NC average growth 

curve.  What happens when such a student reads a book that has text complexity equal to the 

upper end of the CCSS text complexity ranges?  What happens when such a student reads a book 

that has a text complexity equal to the typical text complexity of postsecondary reading materials 

(1300L)?  In the first scenario, the CCSS text demand changes from grade to grade as the 

student’s reading ability (reflected by the growth curve) changes.  In the second scenario, there is 

a fixed future, postsecondary target toward which the student is progressing.  I address both 

situations in Table 1. 

For each of the Grades 3, 5, 8, 10 and 12 (i.e., the transition grades between the CCSS 

grade bands), I tabulate in the first four rows of Table 1:  a) the average student performance 

(estimated from the growth curve); b) the CCSS text complexity upper bound; c) the difference 

between the two; and, d) the resulting forecasted comprehension rate at the end of the grade. 
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TABLE 1 
Forecasted Comprehension Rates Implied by the 2000-2005 North Carolina Average 

Reading Growth Curve Relative to a) the Common Core State Standards (CCSS) 
Grade Bands and Text Complexity Ranges and b) Median Postsecondary Text 

Complexity 

 Grade 

 3 5 8 10 12 

      

 
Average Student Achievement Summarized by the 

Longitudinal Growth Curve 

  

NC (2000-2005) 670L 885L 1117L 1211L 1256L
a
 

      

      

 CCSS Text Complexity Requirements 

  

CCSS 820L 1010L 1185L 1335L 1385L 

Difference -150L -125L -68L -124L -129L 

Forecasted Comprehension 61% 63% 69% 63% 63% 

      

      

 Median Postsecondary Text Complexity 

  

Postsecondary Texts (Median) 1300L 1300L 1300L 1300L 1300L 

Difference -630L -415L -183L -89L -44L 

Forecasted Comprehension 15% 32% 57% 67% 71% 

 
Note.  A multilevel growth analysis (n = 98,515) was used to estimate the average reading achievement at the end of 

each respective CCSS grade band.  The upper boundaries of the CCSS Lexile ranges associated with the respective 

grades are given in the row labeled CCSS.  A reader who is well matched with a text at his or her Lexile measure is 

forecasted to have a 75% comprehension rate. 
a
 The empirical data spanned Grades 3-11.  The estimated average achievement at the end of Grade 12 is 

extrapolated from the growth curve.   

 

 

In general, we expect a reader to have 75% comprehension of a well-targeted text (i.e., a 

text at the student’s reading level).  Because the CCSS text complexity standards represent a 

series of increasing aspirational goals, we can ask how well the average reader in our example 

might do relative to the changing text complexity standards as he or she grows.  That is, what 

would be the student’s comprehension rate when confronted with a text with the higher text 

complexity prescribed by the CCSS?  Table 1 provides the answer.  The forecasted 

comprehension rates rise from 61% (in Grade 3) to 69% (in Grade 8) during the empirical time 

frame for the panel.  However the comprehension rate is forecasted to drop back to 63% during 

the high school years, if the individual continues on the same trajectory traversed during Grades 

3-8.  Although, the CCSS grade bands and text complexity ranges are designed to provide 

flexibility to accommodate readers with a wide range of abilities, this example suggests that the 

average student in the 2000-2005 panel may experience some challenge relative to texts at the 
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upper ends of the CCSS text complexity ranges (because all of the forecasted comprehension 

rates are less than 75%). 

In the bottom half of Table 1, we can see that the hypothetical average student 

experiences increasing rates of comprehension while growing toward the fixed postsecondary 

text complexity target.  Although forecasted comprehension of the median (1300L) 

postsecondary text is understandably low (15%) when the student reads as a typical third grader, 

the forecasted comprehension rate steadily climbs to 71% by the end of Grade 12, based on the 

estimated average reading growth curve.  

A nice feature of this analysis is that it can be replicated with any estimated growth 

curve, whether for an individual or for a group (e.g., an average growth curve).  One only needs 

estimates of reading ability at each desired point in time, which can easily be determined from 

the mathematical equation for growth. 

 

 

Incremental Velocity Norms for Average Reading and Mathematics Growth 
  

Replicating or exceeding some specified previous student achievement level was the basis for 

educational expectations throughout most of the 20
th

 century.  Similarly, replicating or exceeding 

previous growth rates eventually emerged as a basis for student growth standards (North 

Carolina Department of Public Instruction, 1996).  Even so, the best implementation of 

educational growth standards to date has been based on year-to-year gains, without the benefit of 

an underlying longitudinal growth curve.  Growth velocity norms did not emerge even for height 

or weight until the work of Tanner, Whitehouse and Takaishi (1966) in the United Kingdom and 

later in the United States (Roche & Himes, 1980; Baumgartner, Roche & Himes, 1986).  In this 

next example, I use two parametric models for growth (one for reading, one for mathematics) 

derived from NC longitudinal data (MetaMetrics, 2011).  I shall use the historical results to 

create incremental growth velocity norms for average reading and mathematics growth.  The 

approach yields not only estimates of year-to-year gain, but estimates of growth between any two 

points within the design time frame running from the end of Grade 3 to the end of Grade 11. 

The starting point is the realization that an historical aggregate growth curve provides a 

long-term summary of observed growth for a group of students.  As such, it may be regarded as a 

norm for growth.  If this norm were treated as a growth expectation for future panels of students, 

the implicit policy goal would be that future students should grow in a manner that is similar to 

previous historical growth.  When regarded as a set of expectations for future growth, the growth 

curve represents a growth standard.  Perhaps the easiest way to operationalize such a growth 

standard is by generating incremental growth velocity estimates from the average growth curve.  

It is relatively easy to do this.  One needs only the parameter estimates for the average growth 

curve.  In this case, there are two parametric models—one based on a ten-wave analysis of 

reading growth and the other based on a nine-wave analysis of mathematics growth.  These two 

growth curves are salient because they each span Grades 3-11, the grades during which 

accountability assessments are most often implemented in the United States and the grades most 

often the focus of state accountability systems.  

 The estimated average reading growth curve is a function of time, r(T) = 663.8 + 148.0 T 

– 8.7 T
2
.  I can use it to estimate the expected amount of growth from one time point to another.  

For purposes of the example, let us interpret the time scale in terms of grade in school with the 
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understanding that the gains so calculated will represent the growth from one spring to another 

because testing took place at the end of the school year.   

When I calculate the gain between adjacent grades, I have calculated the amount of 

change per unit of time—i.e., the incremental velocity.  When I calculate the gain between any 

two grades more than one year apart, it produces an incremental estimate of the amount of 

growth that took place between those two grades. 

In Table 2, I have tabulated the values of r(k) – r(j) for all pairs of grades (j,k) such that k 

> j where j = 3, 4, … , 10 and k  = 4, 5, … , 11.   The resulting values are displayed in matrix 

form.  Quantities along the diagonal represent the expected gain for each year-to-year transition:  

Grade 3 to Grade 4, Grade 4 to Grade 5, and so on.  These are the incremental yearly, spring-to-

spring growth velocity norms based on a population of 101,610 students.  The off-diagonal 

elements of the table display the amount of growth between every other possible pair of grades.  

This information is useful because it captures longer-term growth expectations, spanning 

multiple grades. 

 To illustrate the interpretation of growth using Table 2, first consider the annual yearly 

growth expectations displayed along the diagonal.  A fourth-grade teacher might reference the 

entry at the intersection of the row for Grade 3 and the column for Grade 4.  The entry conveys 

the expectation for average reading growth between the end of Grade 3 and the end of Grade 4—

namely during the fourth grade year.  It is 139L.  Similarly, the fifth-grade teacher would 

reference the entry at the intersection of the row for Grade 4 and the column for Grade 5 and 

learn that the average growth expected of fifth graders is 122L.  The principal of a middle school 

serving students in Grades 6-8 would be interested in the total gain expected between the end of 

the fifth grade and the end of the eighth grade.  Referring to the intersection of the row for Grade 

5 and the column for Grade 8, the principal learns that the expectation for average reading 

growth for students who spend all three years at the middle school is 260L. 

 Similarly, the average mathematics growth curve can be expressed as:  m(T) = 586.0 + 

100.6 T – 3.0 T
2
.  Having evaluated the average mathematics growth curve at all grade-pairs, I 

displayed the results in Table 3.  The interpretation of average mathematics growth in Table 3 

follows in the same manner as for reading growth (Table 2).   

 In both Table 2 and Table 3 it is obvious that historical growth is typically greater in 

earlier grades and tapers off as grade increases.  This is apparent as one scans along the diagonal 

from upper left to lower right.  This pattern reflects the deceleration of growth and quantifies it in 

practical terms for educators.  However, the off-diagonal entries in the table reinforce the 

realization that long-term growth is the result of a cumulative growth process that endures across 

the developmental life-span. 
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TABLE 2 
Incremental Velocity Norms for Average Reading Growth Denominated in Lexile Scale Units 

 Student Achievement Estimated from the Average Reading Growth Curve 

 664L 803L 925L 1029L 1116L 1185L 1237L 1271L 1288L 

End of Grade 3 4 5 6 7 8 9 10 11 

3   139L 261L 365L 452L 521L 573L 607L 624L 

4     122L 226L 313L 382L 434L 468L 485L 

5       104L 191L 260L 312L 346L 363L 

6         87L 156L 208L 242L 259L 

7           69L 121L 155L 172L 

8             52L 86L 103L 

9               34L 51L 

10                 17L 
Note.  The table is based on an average reading growth curve (ten waves of measurement) for North Carolina students (n = 101,610), spanning grades 3-11 

during the years 2002-2010.  The fitted model is summarized by the equation:  E(L|T) = 663.8 + 148.0 T – 8.7 T
2
 where the time scale is centered at Grade 3 (i.e., 

T = Grade -3).  Velocity increments for adjacent grades (i.e., spring-to-spring gains) are shown in the shaded diagonal.  
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TABLE 3 
Incremental Velocity Norms for Average Mathematics Growth Denominated in Quantile Scale Units 

 Student Achievement Estimated from the Average Mathematics Growth Curve 

 586Q 684Q 775Q 861Q 941Q 1014Q 1082Q 1144Q 1200Q 

End of Grade 3 4 5 6 7 8 9 10 11 

3   98Q 189Q 275Q 355Q 428Q 496Q 558Q 614Q 

4     92Q 177Q 257Q 331Q 399Q 460Q 516Q 

5       86Q 165Q 239Q 307Q 369Q 425Q 

6         80Q 153Q 221Q 283Q 339Q 

7           74Q 142Q 203Q 259Q 

8             68Q 130Q 185Q 

9               62Q 118Q 

10                 56Q 
Note.  The table is based on an average mathematics growth curve (nine waves of measurement) for North Carolina students (n = 101,650), spanning grades 3-11 

during the years 2002-2010.  The fitted model is summarized by the equation:  E(Q|T) = 586.0 + 100.6 T – 3.0 T
2
 where the time scale is centered at Grade 3 (i.e., 

T = Grade -3).  Velocity increments for adjacent grades (i.e., spring-to-spring gains) are shown in the shaded diagonal.  
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CONCLUSION 
 

In this paper, I have proposed novel interpretations of student academic growth based on 

conjoint measurement and longitudinal data analyses.  In three examples, I illustrated how to 

interpret student reading achievement and growth in light of the text complexity associated with 

reading materials that students may encounter during schooling or in the postsecondary world.    

In the final example, I implemented a strategy to create incremental velocity norms for average 

academic growth and provided examples of velocity norms for reading growth and for 

mathematics growth, each based on over 100,000 students. 

The first three examples highlighted the power of conjoint measurement when combined 

with the longitudinal perspective of student growth curves.  We first saw how to compare student 

growth to changing text complexity requirements such as those expressed in the CCSS.  Then, 

we saw a student growth curve juxtaposed with postsecondary text requirements and I suggested 

that alignment between the two is desirable.  Next, we saw how the first two examples lead us to 

forecasted comprehension rates for readers who are themselves growing in their reading ability.  

Although these three examples featured reading ability relative to text complexity requirements, 

it is possible to provide similar examples for growth in mathematics ability relative to the 

complexity of mathematical skills and concepts. 

Finally, we saw how parametric growth curves can strengthen the basis for setting growth 

standards based on longitudinal panel data, rather than the usual practice of setting year-to-year 

growth standards based on non-developmental (e.g., status projection) or short-term growth (e.g., 

gain score) formulations.  Incremental velocity norms such as those presented here are an 

indispensable complement to traditional cross-sectional norms for interpreting student 

achievement because velocity norms a) base year-to-year gains on a longitudinal growth curve 

and b) make it possible to construct expectations of growth between any pair of grades.   

Although, the growth velocity norms provided in this paper are for statewide average 

growth, they are easily extended to sub-populations.  To briefly elaborate, one possibility for 

expanding growth standards is to disaggregate an historical average growth curve into multiple 

growth curves conditioned on initial status.  For example, by grouping students into deciles 

based on initial performance, average growth curves can be estimated for each of the ten deciles.  

Once decile growth curves have been determined, incremental velocity norms can be established 

for each decile group simply by replicating Table 2 (or 3) for each group’s aggregate growth 

curve.  Conditioning growth standards on initial performance is a feature that has been desired in 

some accountability systems.   

 Furthermore, if common scales were universally used for educational constructs and 

longitudinal data were routinely collected and analyzed, then growth velocity standards could 

have even greater generalizability.  Individual state norms, national norms, perhaps even 

international norms for academic growth velocity would become possibilities. 

In the present study, the measurement of growth was constrained to Grades 3-11.  An 

important policy challenge for educators is extending the measurement of reading and 

mathematics abilities beyond traditionally assessed grades.  This entails devising ways to 

measure the same constructs over longer portions of the lifespan using a common scale so that 

we can accurately chart the academic growth of students from emerging readers and 

mathematicians, throughout formal instruction and schooling, and into adulthood.  Our current 

educational measurement capabilities are focused on a fraction of the developmental lifespan and 

miss much of the growth that we might otherwise observe.  Notably, we miss critical transitions 



  GROWTH      33 

such as the entry into K-12 education and transitions into various postsecondary endeavors (e.g., 

higher education, the workplace).  Similarly, we know little about the effects of aging on 

academic growth trajectories because we have not fully developed our capacity to measure 

reading and mathematics abilities across the life course using a common scale.   

Improving the measurement and study of academic growth is more than a research 

agenda or a matter for the research and measurement community.  Educational leaders and 

policy makers should commit resources to support the intellectual endeavor because it enriches 

and sustains the educational enterprise, possibly with residual benefits for long-term human 

intellectual capacity and quality of life.  The advantages become palpable when conjoint 

measurement is brought to bear as a means to link assessment with instruction.  As we have seen 

in these examples, when conjoint measurement is combined with longitudinal analyses of 

academic growth, unique insights and perspectives emerge to inform educational practice. 

 

 

REFERENCES 
 

Andrich, D., & Styles, I. (1994). Psychometric evidence of intellectual growth spurts in early adolescence. Journal 

of Early Adolescence, 14(3), 328-344. 

Baumgartner, F. N., Roche, A. G., & Himes, J. H. (1986). Incremental growth tables: Supplementary to previously 

published charts. The American Journal of Clinical Nutrition, 43, 711-722. 

Bazemore, M., & Van Dyk, P. B. (2004). North Carolina reading comprehension tests: Technical report (Ed.2). 

(“Citable Draft”). Raleigh, NC: North Carolina Department of Public Instruction. 

Bormuth, J. R. (1969). Development of readability analyses. Final Report, Project No. 7-0052, Contract No. OEG-3-

7-070052-0326, Office of Education, Bureau of Research, U.S. Department of Health, Education and 

Welfare. 

Bruning, R. (1985). Review of Degrees of Reading Power. The Ninth Mental Measurements Yearbook, Vol. I, 443-

444. 

Cameron, C. E., Grimm, K. J., Steele, J. S., Castro-Schilo, L., & Grissmer, D. W. (2015). Nonlinear Gompertz curve 

models of achievement gaps in mathematics and reading. Journal of Educational Psychology, 107(3), 789-

804. 

Catts, H. W., Bridges, M. S., Little, T. D., & Tomblin, J. B. (2008). Reading achievement growth in children with 

language impairments. Journal of Speech, Language, and Hearing Research, 51, 1569-1579. 

Goldstein, H. (1979). The design and analysis of longitudinal studies. New York: Academic Press. 

Gompertz, B. (1825). On the nature of the function expressive of the law of human mortality, and on a new mode of 

determining the value of life contingencies. Philosophical Transactions of the Royal Society of London, 

115, 513-583. 

 Guglielmi, R. S. (2008). Native language proficiency, English literacy, academic achievement, and occupational 

attainment in limited-English-proficient students: A latent growth modeling perspective. Journal of 

Educational Psychology, 100, 322-342. 

Kieffer, M. J. (2012). Early oral language and later reading development in Spanish-speaking English language 

learners: Evidence from a nine-year longitudinal study. Journal of Applied Developmental Psychology, 33, 

146-157. 

Koslin, B. L., Zeno, S., & Koslin, S. (1987). The DRP: An effectiveness measure in reading. New York: The 

College Entrance Examination Board. 

Lee, J. (2010). Tripartite growth trajectories of reading and math achievement: Tracking national academic progress 

at primary, middle, and high school levels. American Educational Research Journal, 47(4), 800-832. 

Legendre, A. M. (1805). Nouvelles méthodes pour la détermination des orbites des comètes. Paris: Courcier. 

MetaMetrics. (2009). The Quantile Framework for Mathematics: Linking assessment with mathematics instruction. 

Durham, NC: Author. Retrieved from https://s3.amazonaws.com/quantile-

resources/resources/downloads/static/BriefingDocument.pdf  

MetaMetrics. (2011). NC EOC Feasibility Studies Research & Development Report. Durham, NC: Author. 

National Governors Association Center for Best Practices (NGA Center) & the Council of Chief State School 

Officers (CCSSO). (2010). Common Core State Standards for English Language Arts and Literacy in 

https://s3.amazonaws.com/quantile-resources/resources/downloads/static/BriefingDocument.pdf
https://s3.amazonaws.com/quantile-resources/resources/downloads/static/BriefingDocument.pdf


34     WILLIAMSON 

 

History/Social Studies, Science and Technical Subjects. Washington, DC: Author. Retrieved from 

http://www.corestandards.org/wp-content/uploads/ELA_Standards.pdf 

Nelson, J., Perfetti, C., Liben, D., & Liben, M. (2012). Measures of text difficulty: Testing their predictive value for 

grade levels and student performance. Washington, DC: Council of Chief State School Officers (CCSSO). 

Retrieved on June 11, 2012 from:  

http://www.ccsso.org/Documents/2012/Measures%20ofText%20Difficulty_final.2012.pdf 

No Child Left Behind Act of 2001, PL 107-110 (2002). 

North Carolina Department of Public Instruction. (1996, September). Setting annual growth standards: “The 

formula” (Accountability Brief, Vol. 1, No. 1). Raleigh, NC: Author. 

North Carolina Department of Public Instruction. (2009). North Carolina Reading Comprehension Tests: Technical 

report (Ed. 3). Raleigh, NC: Author. Retrieved from 

http://www.ncpublicschools.org/docs/accountability/testing/reports/eogreadingtechman3.pdf  

Robertson, T. B. (1909). A biochemical conception of the phenomena of memory and sensation. The Monist,19(3), 

367-386. 

Roche, A. F., & Himes, J. H. (1980). Incremental growth charts. The American Journal of Clinical Nutrition, 33, 

2041-2052. 

Sanford, E. E. (1996). North Carolina end-of-grade tests technical report # 1: Reading comprehension, 

mathematics. Raleigh, NC: Department of Public Instruction. 

Sanford-Moore, E. E., Williamson, G. L., Bickel, L., Koons, H., Baker, R. F., & Price, R. (2014). A quantitative task 

continuum for K-12 mathematics (MetaMetrics Research Brief). Retrieved from 

https://s3.amazonaws.com/quantile-

resources/resources/downloads/static/Quantile+Framework+Math+Continuum+Research+Brief+2014.pdf  

Scholastic, Inc. (2007). Scholastic Reading Inventory
TM

 technical guide. New York: Author. 

Schulte, A. C., Stevens, J. J., Elliott, S. N., Tindal, G., & Nese, J. F. T. (2016, January 25). Achievement gaps for 

students with disabilities: Stable, widening, or narrowing on a state- wide reading comprehension test? 

Journal of Educational Psychology. Advance online publication. http://dx.doi.org/10.1037/edu0000107 

Singer, J. D., & Willett, J. B. (2003). Applied longitudinal data analysis: Modeling change and event occurrence. 

New York: Oxford University Press. 

Sonneschein, S., Stapleton, L. M., & Benson, A. (2010). The relation between the type and amount of instruction 

and growth in children’s reading competencies. American Educational Research Journal, 47, 358-389. 

Stenner, A. J., Burdick, H., Sanford, E., & Burdick, D. S. (2007). The Lexile Framework for Reading technical 

report. Durham, NC: MetaMetrics, Inc. Retrieved from http://www.lexile.com/research/9/  

Stenner, A. J., Smith, D. R., Horabin, I., & Smith, M. (1987). Fit of the Lexile theory to sequenced units from eleven 

basal series. Durham, NC: MetaMetrics. Retrieved from https://lexile-website-media-

2011091601.s3.amazonaws.com/m/resources/materials/Stenner_Smith_Horabin_Smith-

_Fit_of_the_Lexile_Theory_to....pdf 

Stenner, A. J., & Smith, M. (1982). Testing construct theories. Perceptual and Motor Skills, 55, 415-426. 

Stenner, A. J., Smith, M., & Burdick, D. S. (1983). Toward a theory of construct definition. Journal of Educational 

Measurement, 20, 305-316. 

Tanner, J. M. (2010). A history of the study of human growth. Cambridge, UK: Cambridge University Press. 

Tanner, J. M., Whitehouse, R. H., & Takaishi, M. (1966). Standards from birth to maturity for height, weight, height 

velocity and weight velocity: British children, 1965. Archives of Disease in Childhood, 41, 454-471, 613-

635. 

Williamson, G. L. (2008). A text readability continuum for postsecondary readiness. Journal of Advanced 

Academics,19(4), 602-632. 

Williamson, G. L. (2014). Measuring and modeling individual academic growth: Methodological foundations for 

educational applications in the 21
st
 century. Manuscript in preparation. 

Williamson, G. L. (2015). Measuring academic growth contextualizes text complexity. Pensamiento Educativo: 

Revista de Investigación Educacional Latinoamericana, 52(2), 98-118. 

Williamson, G. L., Fitzgerald, J., & Stenner, A. J. (2014). Student reading growth illuminates the Common Core 

text-complexity standard: Raising both bars.  Elementary School Journal, 115(2), 230-254. 

Williamson, G. L., Koons, H., Sandvik, T., & Sanford-Moore, E.  (2012).  The Text Complexity Continuum in 

Grades 1-12 (MetaMetrics Research Brief).  Durham, NC:  MetaMetrics. 

Winsor, C. P. (1932). The Gompertz curve as a growth curve. Proceedings of the National Academy of Sciences, 

18(1), 1-8. 

http://www.corestandards.org/wp-content/uploads/ELA_Standards.pdf
http://www.ccsso.org/Documents/2012/Measures%20ofText%20Difficulty_final.2012.pdf
http://www.ncpublicschools.org/docs/accountability/testing/reports/eogreadingtechman3.pdf
https://s3.amazonaws.com/quantile-resources/resources/downloads/static/Quantile+Framework+Math+Continuum+Research+Brief+2014.pdf
https://s3.amazonaws.com/quantile-resources/resources/downloads/static/Quantile+Framework+Math+Continuum+Research+Brief+2014.pdf
http://dx.doi.org/10.1037/edu0000107
http://www.lexile.com/research/9/
https://lexile-website-media-2011091601.s3.amazonaws.com/m/resources/materials/Stenner_Smith_Horabin_Smith-_Fit_of_the_Lexile_Theory_to....pdf
https://lexile-website-media-2011091601.s3.amazonaws.com/m/resources/materials/Stenner_Smith_Horabin_Smith-_Fit_of_the_Lexile_Theory_to....pdf
https://lexile-website-media-2011091601.s3.amazonaws.com/m/resources/materials/Stenner_Smith_Horabin_Smith-_Fit_of_the_Lexile_Theory_to....pdf


  GROWTH      35 

Wishart, J. (1938). Growth rate determinations in nutrition studies with the bacon pig, and their analysis. 

Biometrika, 30, 16-28. 

 


